Implant Resist Approaches for 193nm Second Generation Radiation Sensitive Developable Bottom Anti Reflective Coatings
نویسندگان
چکیده
منابع مشابه
Bottom Anti-Reflective Coatings (BARCs) for 157-nm!Lithography
Bottom anti-reflective coatings (BARCs) are essential for achieving the 65-nm node resolution target by minimizing the substrate reflectivity to less than 1% and by planarizing substrates. We believe that the developments in 157-nm BARC products are on track to make them available for timely application in 157-nm lithography. We have made some significant improvements in resist compatibility an...
متن کاملAnti-reflective coatings reflect ultraviolet radiation.
Anti-reflective (AR) coatings provide numerous visual benefits to spectacle wearers. However, coating designers and manufacturers seem to have placed little or no emphasis on reflectance of wavelengths outside the visible spectrum. Ultraviolet (UV) radiation from sources behind the wearer can reflect from the back lens surface toward the wearer's eye. Various clear lens materials, with and with...
متن کاملAbrasion Resistant Anti-Reflective Sol-Gel Coatings
Many optics in both the OMEGA and OMEGA EP lasers are coated with anti-reflective (AR) silane sol-gel to maximize their transmittance. Although these coatings are highly resistant to both airborne contaminants and laser damage, they are susceptible to mechanical damage by abrasion, and thus require extra care during the handling, installation and alignment of sol-gel optics. Previous “hardened”...
متن کاملAnti-reflective optical coatings incorporating nanoparticles.
This paper presents a simple approach for forming anti-reflective film stacks on plastic substrates employing aqueous colloidal dispersions of metal oxide nanoparticles. Results demonstrate that it is possible to fabricate a polymeric thin film of continuously tunable refractive index over a wide range by loading the film with varying concentrations of metal oxide nanoparticles. Specifically, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Photopolymer Science and Technology
سال: 2007
ISSN: 0914-9244,1349-6336
DOI: 10.2494/photopolymer.20.359